If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=49/64
We move all terms to the left:
b^2-(49/64)=0
We add all the numbers together, and all the variables
b^2-(+49/64)=0
We get rid of parentheses
b^2-49/64=0
We multiply all the terms by the denominator
b^2*64-49=0
Wy multiply elements
64b^2-49=0
a = 64; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·64·(-49)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*64}=\frac{-112}{128} =-7/8 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*64}=\frac{112}{128} =7/8 $
| -2=4+2w/2 | | 5^(-6y)=8 | | 104+-4x=-200 | | 3+2p=1 | | 3(x+8)-5x=2(x+4) | | 24x-3(6x+1)=2(3x-5) | | 8p-3=3 | | 33=-4a-11 | | u−5/2=2 | | 5v+36=21 | | -(x-18)=14 | | 1−10q=7−7q−6q | | 5x+2(4+x)=10/1 | | 8k−6=10k | | -6r-43=-19 | | -9=-2y-21 | | -5x-36=-5(x+8)+4 | | 3(n+5)=8(5-n) | | 58=6x+16 | | n=222n | | 25x+31=22x+59 | | -10k-39=51 | | 4=-2r+10 | | -8g=-8−10g | | -10x+32=-2(5x+10) | | 2/3p-4=10 | | -9+w=-3+7w | | -7x=8(-6x+6)-7x | | -10x+32=-2(5x+10 | | 12x-32=23x+27 | | 5.6+2y=3y+1.6 | | 22=m/4 |